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Gravity in a lattice Boltzmann model
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~Received 26 March 1999; revised manuscript received 19 November 1999!

In this paper we consider the introduction of a body force, in the incompressible limit, into the lattice
Boltzmann model. A number of methods are considered and their suitability to our objectives determined.
When there is no density variation across the fluid, gravity can be introduced in the form of an altered pressure
gradient. This method correctly satisfies the Navier-Stokes equation; however, if there is a non-negligible
density variation present~produced by the body force or otherwise! this method becomes less accurate as the
density variation increases and the constant density approximation becomes less valid. Three other methods are
also considered for application when there is a non-negligible density variation. The equations of motion
satisfied by these models are found up to second order in the Knudsen number and it is seen that only one of
these methods satisfies the true Navier-Stokes equation. Numerical simulations are performed to compare the
different models and to assess the range of application of each.

PACS number~s!: 47.11.1j, 02.70.2c
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I. INTRODUCTION

A recent development in the computational study of flu
has been the lattice Boltzmann model@1–4# which has de-
veloped from the lattice-gas automata@5#. This has been
used successfully to simulate many problems including m
netohydrodynamics@6#, turbulence@7,8# colloidal suspen-
sions @9#, and multiphase flow@10–12#. Lattice Boltzmann
simulations have traditionally been performed on a regu
grid, however, it has recently been shown that, with the
clusion of an interpolation step, the technique can be app
on an irregular grid with the introduction of only a sma
error @13#.

There is a wide range of fluid problems in which grav
and buoyancy effects are significant, for example, the st
of water waves@14–16#. In this paper we consider the inclu
sion of a body force in the lattice Boltzmann scheme. W
begin by describing the lattice Boltzmann model and sho
ing that the model does indeed mimic the Navier-Sto
equation. Different methods for implementing gravity in
the model are then considered and their ability to satisfy
Navier-Stokes equation is assessed. A number of simulat
involving gravity are presented to verify the theoretical co
clusions.

Here we are concerned with simulating gravity in the
compressible limit of a linearly varying density. In this lim
we requiregz!cs

2 , whereg is the gravitational strength,z is
the vertical extent of the simulation, andcs is the speed of
sound. In this limitg can have a significant value so it
clearly important that the introduction of gravity does n
affect the existing scheme, other than by introducing the
quired body force, since terms of orderO(g) cannot be ne-
glected in the fluid equations.

II. LATTICE BOLTZMANN MODEL

The simulation described here is performed on
D-dimensional regular grid withb links at each grid point.
PRE 611063-651X/2000/61~5!/5307~14!/$15.00
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Each link has lengthc and directionei , i 51, . . . ,b. In prac-
tice the grid is either a two-dimensional hexagonal grid@5#
(D52, b56) or a four-dimensional face-centered hyperc
bic lattice @17,18# (D54, b524). The technique involves
simulating the Boltzmann equation@19,20#

f i~r1ei ,t11!2 f i~r,t !5V i~r,t !. ~1!

The functionsf i(r,t), i 51, . . . ,b are the distribution func-
tions along theb links at positionr and time t. The fluid
density,r, and velocity,u, can be found from the distribu
tion functions as

r5(
i

f i andrua5(
i

f ieia , ~2!

where we have used the notation (ei)a5eia . The collision
term, V i(r,t), is usually taken to be the single relaxatio
time or Bhatnagar-Gross-Krook~BGK! operator@21,6#

V i~r,t !52
1

t
@ f i~r,t !2 f̄ i~r,t !#, ~3!

where f̄ i is the equilibrium distribution function andt is the
relaxation time, wheret.1/2. The form of this equilibrium
distribution function must be chosen so that the fluid m
and momentum are conserved and so that the resulting
tinuum equations describe the hydrodynamics of the fl
being simulated@12#. The correct form of the equilibrium
distribution also ensures that the fluid is isotropic and G
ilean invariant@22#. The following equilibrium distribution
function produces an isotropic, single phase fluid that sa
fies the continuity and Navier-Stokes equations:

f̄ i~r,t !5Ei~r,u!, ~4!

where
5307 ©2000 The American Physical Society
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Ei~r,u!55 rS 12d0
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andd0 is a constant@3,7#.

III. CHAPMAN-ENSKOG EXPANSION

The derivation of the continuity equation and the Navi
Stokes equation from the equilibrium distribution is norma
carried out using a Chapman-Enskog expansion, follow
the lattice gas derivation of Frischet al. @17#. To perform the
Chapman-Enskog expansion we must first Taylor expand
~1!:

f i~r1ei ,t11!2 f i~r,t !.F] t1eia]a1
1

2
eia]a~eib]b1] t!

1
1

2
] t~eia]a1] t!G f i~r,t !. ~6!

Expanding the population functions and the time and sp
derivatives in terms of the Knudsen number@19,17#, e, we
get

f i5 f i
(0)1e f i

(1)1e2f i
(2)1•••,

] t5e]1t1e2]2t1•••, ~7!

] r5e]1r .

Substitution of Eq.~7! into Eq. ~6! and considering sepa
rately the termsO(e) and O(e2) we can perform a
Chapman-Enskog expansion to obtain the continuity eq
tion,

] tr1]arua50 ~8!

and the Navier-Stokes equation

] trua1]brubua52]bFr~12d0!

D
c2dabG1n]b]brua

1]az]brub , ~9!

where n5c2(t21/2)/(D12) and z5(t21/2)@2c2/(D
12)2c2(12d0)/D# are the kinematic and bulk viscositie
The pressure term in Eq.~9! is p5rc2(12d0)/D, which
gives the speed of sound as
-

g

q.

e

a-

cs5Ac2~12d0!

D
. ~10!

IV. GRAVITY IN A LATTICE BOLTZMANN MODEL

We now wish to consider a lattice Boltzmann model th
will mimic the Navier-Stokes equation with a body force.

A. The classic Boltzmann equation

The Boltzmann equation for a fluid with a body force p
unit massF is @19#

] t f 1ca] ra f 1Fa]ca f 5V~ f !, ~11!

wheref (c,r,t)dcdr is the number of molecules at timet with
velocities in the rangec→c1dc and position in the ranger
→r1dr and

]ca5
]

]ca . ~12!

The difference between the Boltzmann equation when th
is no body force present and when thereis a body force is an
extra term:Fa]ca f . In the lattice Boltzmann equation we ar
looking to add a similar term to incorporate a body forc
Since, however, the velocity of all the ‘‘particles’’ is con
stant in the lattice Boltzmann model, we cannot simply
troduce an expression with exactly the same form but m
instead look to add a term that will modify the fluid mome
tum.

B. Combining the gravity term and the pressure tensor—
method „1…

When a body force is included in the Navier-Stokes eq
tion it is common to express the force in terms of the gra
tational potential:2r“f. When this approach is taken, an
the density variation produced by the body force is neg
gible, the Navier-Stokes equation incorporating the bo
force can be expressed in the same form as in the absen
gravity but with an altered pressure:p→p1rf. Following
this approach we can redefine the equilibrium distribution
Ei8~r,u!55 rS 12d0

b
1

lfD

bc2
1

D

c2b
ei•u1

D~D12!

2c4b
~ei•u!22

Du2

2c2b
D , i 51,b

rS d02
lfD

c2
2

u2

c2D , i 50,

~13!
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with l 51. The parameterl is introduced here in such a wa
that l 51 corresponds to gravity being incorporated as a p
sure term andl 50 corresponds to the standard lattice Bo
zmann model without gravity.

C. Calculating the equilibrium distribution with an altered
velocity—method „2…

Gravity can be introduced into the lattice Boltzma
scheme by considering the momentum change produced
body force@23#. If a gravitational forceF is acting, then at
every timestep there is a change of momentumDP5F. To
incorporate this into the model an equilibrium distribution

f̄ i~r,t !5Ei~r,u* ! ~14!

is used whereu* is the ‘‘equilibrium velocity’’ @24#, which
is given by@23#

ru* 5ru1tF. ~15!

Hereu is defined, as before, byrua5( i f i(r,t)eia . The fluid
momentumrv is defined@24# to be the average of the mo
mentum before the collision,ru, and the momentum afte
the collision,ru1F:

rva5rua1
1

2
Fa . ~16!

D. Adding an additional term to the Boltzmann
equation—method„3…

Gravity can also be introduced into the lattice Boltzma
scheme in a manner similar to that adopted for the lattice-
model@17#, that is, by adding a term to the collision functio
that modifies the distribution function@25,26#. Here the Bolt-
zmann equation is

f i~r1ei ,t11!2 f i~r,t !5V i~r,t !, ~17!

where

V i~r,t !52
1

t
@ f i~r,t !2 f̄ i~r,t !#1

D

bc2
Faeia , ~18!

andu and f̄ i are defined in the usual way:rua5( i f ieia and
f̄ i5E(r,u). The fluid momentum is defined, as befor
throughrva5rua1 1

2 Fa .

E. Composite model—method„4…

Here we consider a new method for introducing grav
into the lattice Boltzmann model. This has the collision fun
tion given by

V i~r,t !52
1

t
@ f i~r,t !2 f̄ i~r,t !#1

2t21

2t

D

bc2
Faeia ,

~19!

where

f̄ 5E~r,u1F/2r!. ~20!
s-

y a

as

,

-

This is a combination of methods~2! and ~3! with the coef-
ficients selected to ensure the model satisfies the contin
and Navier-Stokes equations for a fluid under the influe
of a body force. This will be shown in Sec. IV F.

F. The equations of motion for a lattice Boltzmann model
incorporating gravity

Now consider the following Boltzmann equation:

f i~r1ei ,t11!2 f i~r,t !52
1

t
~ f i2 f̄ i !1m

D

bc2
Faeia ,

~21!

where

f̄ i5Ei8~r,u1nw!, ~22!

w5tF/r and Ei8 is defined by Eq.~13!. This represents
method~1! for l 51, m5n50, method~2! for m51, l 5n
50, method~3! for n51, l 5m50, and method~4! for l
50, m5(2t21)/(2t), n51/(2t). As before, we wish to
perform a Chapman-Enskog expansion by expressing

f i5 f i
(0)1e f i

(1)1e2f i
(2) , ] t5e]1t1e2]2t , and]a5e]1a ,

~23!

where the notation (]1r)a5]1a has been used. The bod
forceFa , and hencef, are of ordere @25#. This can be seen
by assuming thatFa5O(e0) and considering the zeroth
order expansion of the Chapman-Enskog expansion:

f i
(0)5 f̄ i1

mtD

bc2
Faeia . ~24!

Multiplying this expansion byeib and summing gives

(
i

f i
(0)eib5(

i
f̄ ieib1mtFb5rub1~n1m!tFb .

~25!

But ( i f ieib5rub so we must have

eS (
i

f i
(1)eib1e(

i
f i

(2)eib1••• D 52~n1m!Fb ,

~26!

which requiresFa5O(e) or f i
(1)5O(e21), both of which

are in contradiction of the hypothesis. Thus, sincef̄ i is now
a function ofF, we also need to expand

f̄ i5 f̄ i
(0)1e f̄ i

(1)1e2 f̄ i
(2) , Fa5eF1a , andf5ef1 .

~27!

Performing a Chapman-Enskog expansion, see Appendi
we obtain the following macroscopic equations:

] tr1]aFrua1
1

2
~n1m!FaG50 ~28!

and
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] tFrua1
1

2
~n1m!F1aG1]b@ruaub1tn~uaFb1ubFa!#

52]aS r~12d0!c2

D D1n]b]brua1z]a]brub

1~n1m!Fa2 l ]arf. ~29!

For method~1! we havel 51, m5n50 in which case Eqs
~28! and~29! are the continuity and Navier-Stokes equatio
for a fluid with velocityu and a body forceF52r“f. For
methods~2!, ~3!, and ~4! we havel 50, m1n51 in which
case Eqs.~28! and~29! can be written~up to second order in
e)

] tr1]arva50 ~30!

and

] trva1]brvavb1]b~nt21/2!~uaFb1ubFa!

52]aS r~12d0!c2

D D1n]b]brva1z]1a]1brvb1Fa ,

~31!

wherev is defined, as before, to be the mean fluid veloc
rva5rua1Fa/2. Equations~30! and~31! are the continuity
and the Navier-Stokes equations for a fluid with velocityv
and a body forceF with an additional term ]b(nt
21/2)(uaFb1ubFa). This term may be small for the value
of F considered here but will only be zero forn51/(2t),
that is for method~4!.

G. Review of methods

The Navier-Stokes equation is recovered from Eq.~29!
for l 51 and m5n50, only when the term]arf can be
expressed asr]af. Thus we only expect method~1! to be
appropriate in situations where there is no density cha
across the fluid, or the density change is negligibly sm
This is common to any situation where gravity is introduc
through a potential that modifies the pressure term. Meth
~2! and~3! can be applied where there is a density change
we are looking at a steady state solution, where]b(uaFb
1ubFa)50. Two situations were this can occur are cons
ered in this paper. First, when the steady state velocit
zero and second, when the nonlinear term in the Nav
Stokes equation is zero and the induced velocity is paralle
F. Method~4! is applicable in any situation where gravity
applied in the incompressible limit. In general the variati
between methods~2!, ~3!, and~4! will depend on the values
of u and F through the anomalous term]b(uaFb1ubFa).
The difference between the lattice Boltzmann operat
V i

(2)2V i
(3) for methods~2! and~3!, acting on the same dis

tribution function f i , is
s

:

e
l.

ds
ut

-
is
r-
to

s

r

t H F2uatFb

r
1

t2FaFb

r2 GD~D12!eiaeib

2c4b

2
D

2c2b
F2uatFa

r
1

t2FaFa

r2 G J i 51,b

2
r

t S 2tFaua

rc2
1

t2FaFa

r2c2 D , i 50. ~32!

The difference contains termsO(uF/r) andO„(F/r)2
…. It is

assumed in the derivation of the equations of motion thau
!cs and, in the incompressible limit, we also haveuFu
!cs

2/z. This gives a measure on the size of the terms in
~32!. Thus, in general, the difference expressed in Eq.~32!
will be small. AlthoughF/r is small it can still produce a
significant effect. The difference expressed in Eq.~32! being
small does not imply that the density change is small,
required for method~1!. The differencesV i

(2)2V i
(4) and

V i
(3)2V i

(4) will contain terms of the same order. We no
that while the values ofV i

(1)2V i
(2) are different for eachi,

( i(V i
(1)2V i

(2))50 and( i(V i
(1)2V i

(2))eig50. This means
that in simulations where methods~2!, ~3!, and~4! satisfy the
same equations of motion, that is]b(uaFb1ubFa)50,
there will be a difference in the values off i between the
different models, but the values ofr andu should, however,
be identical.

V. ERRORS IN A LATTICE BOLTZMANN SIMULATION

There are a number of sources of error that can affe
lattice Boltzmann simulation. Rounding errors will alway
be present in any numerical model. Here double precis
arithmetic was used to give results with 15 significant fi
ures. In single precision simulations a precision of sev
significant figures would give an error ofO(1027).

In the derivation of the Navier-Stokes equation describ
in Sec. III only terms up toO(e2) are considered—highe
order terms are neglected. The Knudsen number,e, is the
ratio of the grid separation to the typical macroscopic len
in the simulation. Thus we must ensure thate is small in any
simulation to minimize the error introduced by neglecti
higher order terms. Smalle is equivalent to having a large
number of grid points corresponding to the shortest len
scale in the simulation. Here we typically use a grid with
points, which givese51/(64A3/2), since the length scale i
the grid size and the grid is orientated so that the horizo
separation of grid points isA3/2. This also relates to the
spatial discretization error, which is introduced because
are mimicking a continuous system by a grid simulation.
small Knudsen number that implies a significant number
grid points along any length scale also implies a small spa
discretization error. Time is also discrete in the lattice Bo
zmann model and the temporal discretization error must a
be small if a simulation is to produce meaningful resul
That is, a typical macroscopic time scale must be large w
respect to the discrete time step. Sincecs is O(1) this is also
satisfied by a small Knudsen number.

It has been shown by many authors that, provided
boundary conditions are suitably implemented, the latt
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Boltzmann model is a second-order scheme. This was s
ied by Nobleet al. @27# who considered flow between tw
parallel porous plates; one stationary and one moving. T
showed that the lattice Boltzmann model applied with
boundary conditions used here is a second-order scheme
a length scale of 64A3/2 lattice units they find the averag
error to beE.331024, whereE is defined by

E5

(
y

uu2ûu

(
y

uuu
, ~33!

and whereu is the simulated velocity,û is the analytic ve-
locity, and the summation is over all points in a line perpe
dicular to the two plates. This gives an estimation of t
discretization errors for a simulation with length sca
64A3/2.

We note that the lattice Boltzmann equation, Eq.~1!, can
be viewed as a finite difference equation. Although the d
cretization is first order the lattice Boltzmann method is
second-order scheme as discussed above. The second
nature of the lattice Boltzmann model is further discussed
Sterling and Chen@28#. Under certain special circumstanc
a second-order difference scheme on a regular grid can
an exact solution with zero discretization error. This occur
the terms in the expression for the discretization error
identically zero. One such case is Poiseuille flow, which
created between stationary parallel vertical walls when
fluid is driven by gravity. The steady-state solution can e
ily be found since the Navier-Stokes equation reduces to

n
]2uz~x!

]x2
5g, ~34!

which has the solution

uz~x!5
g

2n
~x22L2! ~35!

where the walls are atx56L. The truncation error for a
second-order central difference scheme depends on the
rivatives]4uz(x)/]x4, ]6uz(x)/]x6, . . . , which are all zero
in this special case. Thus we expect to be able to simu
Poiseuille flow using the lattice Boltzmann model to with
the truncation error of the computer@27#.

The lattice Boltzmann model satisfies the Navier-Sto
equation in the nearly incompressible limit. By introducin
gravity we inevitably introduce a compressibility error in
the system. Here we consider a body force in the inco
pressible limit,gz!cs , and consider the compressibility e
rors that this introduces into the model.

VI. NUMERICAL SIMULATIONS

Methods~1!–~4! were implemented so that the affect th
have on a fluid simulation could be observed and any dif
ences between the models could be considered. The valu
d050.5 was used throughout. The simulations were writ
in FORTRAN using double precision arithmetic giving 64-b
d-

y
e
For

-
e

-

rder
y

ve
if
e
s
a
-

de-

te

s

-

r-
of

n

precision. The single phase simulations were performed o
Sun server, each simulation taking no more than 20 C
minutes. The immiscible fluid simulations were perform
on the CM-200 at Edinburgh University.

A. Density gradient

A system was initialized on a 64364 grid with zero ve-
locity and initial densityr051. An impermeable boundary
was placed at the bottom (z50) of the grid, which also acted
as a boundary at the top; continuous boundary conditi
were applied at the other two edges. Gravity was then
plied using each of the methods and the density meas
every 1000 timesteps along a vertical line through the mid
of the grid. The results are shown in Fig. 1 at times 10
2000, 3000, 4000, and 5000 timesteps when gravity is
plied with strengthg50.001 using method~3! with t51.0.
The density profile is seen to ‘‘oscillate’’ about its final po
sition for several thousand timesteps before reaching its fi
state. The final state density distribution is found to lie clo
to the distribution fort53000 timesteps in Fig. 1 and so
not included for clarity. The observed ‘‘oscillations’’ are ju
the damping of sound waves due to the fact that the ini
density is uniform.

This was repeated for each of the methods forg50.001,
g50.0001, andg50.000 01 and fort50.55, 1.0, 5.5, and
50.5. The simulations were run until the final density var
tion with depth settled down to a steady state. The differ
density variations were then compared with each other
with the analytic expressions for the incompressible lim
which are found in Appendix B. The density differencerab
for a,bP$1,2,3,4,T% is defined to berab5r (a)2r (b), where
r (a) is the steady state density produced when method~a! is
applied fora51, 2, 3, and 4 and the density predicted by t
theoretical expression, Eq.~B19!, for a5T. First we con-
sider the differences between method~1! and method~4!.
This is shown in Fig. 2 wheng50.001 and there is a signifi
cant density change across the fluid of about 20%. The d
sity variation produced by method~4! is seen to be approxi
mately linear while for method~1! it is curved. This is
expected since the conditions here clearly break the assu

FIG. 1. Density as a function of height at selected times wh
gravity is applied using method~3! whenF520.001ez . The den-
sity is measured in particles per site and the height in lattice si
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tion that r is constant as required in method~1!. When g
50.000 01 and the density variation is about 0.2%, the d
sity variation is considerably smaller and so is the differen
between the density variation produced by methods~1! and
~4! as shown in Fig. 3. The difference here is not sign
cantly larger than the computational rounding error in a st
dard 32-bit calculation. Wheng50.0001 the density varia
tion across the fluid is about 2% and the difference betw
the results,ur14u5O(1023). The difference between the den
sity variation produced by method~4! and the analytic results
in the incompressible limit,gz/cs

2!1, is shown in Fig. 4 for
the three values ofg considered. The ratiocs

2/gz is 4.5, 45,
and 450 forg50.001, 0.0001, and 0.000 01, respective
For the lowest value ofg the incompressibility condition is
fully satisfied and the variations are not much larger than
numerical rounding error when standard 32-bit precision
used. When g50.001 the incompressibility condition
(gz/cs

2!1) is just met sincegz/cs
250.022. Here the agree

ment between the analytical results and the simulation
reasonable with a variation of no more than about 0.01
This is no larger than the typical discretization error
O(1024), which we would expect in a simulation of thi
size. For the largest value ofg the incompressible limit is no
truly satisfied (gz/cs

250.22), however, even here the vari

FIG. 2. The density variations with height produced by metho
~1! and~4! wheng50.001. The density is measured in particles p
site and the height in lattice sites.

FIG. 3. The difference between the density variations w
height produced by methods~1! and ~4! when g50.000 01. The
height is measured in lattice sites.
n-
e

-
-

n

.

e
s

is
.

f

tion is only about 1%. The difference between the results
method~1! and the analytic result are also shown in Fig.
In each case the difference is generally larger. Forg
50.000 01 it isO(1026), as was seen in Fig. 3 and is n
significant. Forg50.0001 the error isO(1023), which is an
order of magnitude larger thenurT4u suggesting that the con
stant density approximation is not valid and method~4! @or
methods~2! or ~3!# would be preferred. Forg50.001 the
difference urT1u can be larger than 1% and is typical
double urT4u although the differences are for different re
sons. The large value ofurT1u is due to the density gradien
that cannot be approximated to zero. The error inurT4u is due
to gz5O(cs

2) implying that we are outside the incompres
ible limit and so we do not expect a linear density chan
For both methods the difference between the simulation
sults and theory is seen to depend ong, suggesting that in
this case the compressibility error is the main source of er

The difference between the densities predicted by me
ods~2!, ~3!, and~4! are shown in Fig. 5. For each value ofg
the densities obtained by methods~2! and ~4! and hence the
difference ur24u are independent oft as predicted by Eq.

s
r

FIG. 4. The density differencesurT1u and urT4u as functions of
depth for different values ofg. The differencesurT1u are represented
by the thin lines and the differencesurT4u by the thick lines. The
height is measured in lattice sites.

FIG. 5. The density differencesur24u and ur34u as functions of
depth for different values ofg and t. The differencesur24u are
independent oft so, for a given value ofg the four results for the
four different values oft lie on the same curve. The other curve
representur34u and are marked 1, 2, 3, or 4 corresponding tot
50.55, t51.0, t55.5, andt550.5, respectively. The height i
measured in lattice sites.
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~B18!. The differencesur34u are increasing functions oft, in
agreement with the difference being dependent on a t
containing the factor (t21/2), for t.1/2. All the relative
differences are observed to increase withg. The difference
between the results forg50.000 01 andg50.0001 and the
difference between the results forg50.0001 andg50.001
differing by a factorO(1023). In all the cases considered th
largest value of the differences between the methods i
least an order of magnitude smaller than the difference
tween the results and the analytic expression, Eq.~B19!. For
the lower values ofg ~0.0001 and 0.000 01!, which are
strictly within the incompressible regime, the difference
greater and at the low values oft at which the lattice Bolt-
zmann model is normally run, the difference is greater s
for g50.0001 andt51 we haveur34u5O(1029) and urT4u
5O(1024). Thus the density gradients produced by the d
ferent models are not significantly different when compa
to the error introduced by the incompressibility approxim
tion.

B. Simulations with nonzero velocities

Two situations are considered where the fluid velocity
nonzero. Gravity driven Poiseuille flow, where the density
constant, the velocity is nonzero, and the nonlinear term
the Navier-Stokes equation is zero, is a simulation that
four methods should be suited to. During the time betwe
the initialization of the fluid as described in Sec. VI A an
the formation of the steady state density gradients that w
measured, the density and velocity of the fluid are functio
of time, as seen in Fig. 1, in such a way that the nonlin
term in the Navier-Stokes equation is nonzero. Thus the
ferences between methods~2!, ~3!, and~4! should be observ-
able in this interim period.

1. Poiseuille flow

Poiseuille flow is created between stationary parallel v
tical walls when a fluid is driven by gravity and has a stea
state solution

uz~x!5
g

2n
~x22L2!, ~36!

where the walls are atx56L. Method~2! has been applied
to simulate Poiseuille flow@23# for a body force that pro-
duces a maximum velocity 0.0005 and method~3! has been
applied@25,27# and seen to produce results that are corr
up to the machine accuracy. Poiseuille flow was simula
here for all four methods. When suitable boundary con
tions @27# were applied at the wall boundaries and contin
ous boundary conditions at the nonwall edges, methods~2!,
~3!, and~4! all produced the expected flow pattern correct
machine accuracy for a range of different values oft andg.
Since method~4! can be thought of as a composite of me
ods~2! and~3! it is hardly surprising that it performs equall
well. Method ~1! can also be applied here since there is
density variation in the fluid. Since the gravitational potent
is a linear function of the vertical position continuous boun
ary conditions cannot be applied across the open ends;
would produce a large potential difference across the edg
the grid that would exactly cancel out the gravitational p
m
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tential. To overcome this, the following boundary condition
see Fig. 6, were applied after the standard streaming: di
bution functions on the penultimate rows are mapped o
the end rows at the opposite side of the grid. An example
the flow patterns set up is shown in Fig. 7, which agrees w
Eq. ~36! to the machine accuracy. Here there is no discr
zation error, as discussed in Sec. V and there is no compr
ibility error since the density is constant.

2. Changeable flow

Flow phenomena where the nonlinear term of the Nav
Stokes equation is nonzero are in general more complex
do not have simple analytic solutions. We expect meth
~2!, ~3!, and ~4! to exhibit differences in such situations s
we consider the evolution of the fluid between the initializ
tion described in Sec. VI A~zero velocity and constant den
sity! and the steady state situation, which was just discus
The difference between the density and velocity at a poin
the center of the grid, found using methods~2!, ~3!, and~4!,
as a function of time, is shown in Fig. 8 whent550.5 and
g50.0005. This givescs

2/gz59 and so is the largest value o
g that could be reasonably used in the incompressible lim
This value ofg gives a maximum value for the velocity n
larger than 0.1. The density difference,rab between methods
~a! and ~b! can be thought of as relative density differenc
sincer.1 at the center of the grid. Relative velocity diffe
ences cannot sensibly be considered since the velocity is

FIG. 6. The boundary condition applied to produce continuo
boundary conditions for method~1!.

FIG. 7. The steady state Poisseuille flow simulated us
method~1! wheng50.0001. The pipe widthx is measured in lattice
sites and the velocityuz in ~lattice sites!/~time step!.
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cillating about zero, however the velocity differences relat
to the maximum value of the velocity can be considered.
small timesur34u peaks at about 331024 giving a relative
density difference of about 331024, whereasur24u gives a
much smaller maximum density difference of about
31026. Initially the values ofuu24u and uu34u peak at values
O(10) smaller than the corresponding density differenc
Sinceumax5O(0.1) at these times the relative density diffe
ence and the relative velocity difference~relative to the
maximum value ofu) are of the same order for each com
parison. At later times the peak values ofuu24u and uu34u
remainO(10) smaller than the corresponding densities, ho
ever, the peak values of the velocity are reduced at th
times so the relative velocity differences become larger t
the relative density differences at the peaks as time increa
The absolute value of all the differences, however, decre
with time in an approximately exponential manner at ab
the same rate.

This was repeated fort55.50, 1.0, 0.55, and 0.505. I
each case the maximum values ofurabu anduuabu were found
for the different values ofa andb of interest. The results ar
shown in Fig. 9 as a function of the viscosity, an increas
function of t. For both the density and the velocity, the d
ferences between methods~2! and ~4! are decreasing func
tions of t and the differences between methods~3! and ~4!
are increasing functions oft. At t51(n51/8) we find

FIG. 8. The density and velocity differencesr24, r34, u24, and
u34 for g50.0005 andt550.5. The time is measured in time step

FIG. 9. The maximum values of the density and velocity diffe
encesr24, r34, u24, and u34 for g50.0005 as a function of the
fluid viscosity, which is an increasing function oft. The viscosity is
measured in units of~lattice sites!2/~time step!.
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ur34u5ur24u and uu34u5uu24u as predicted.
The results here show that there is an observable dif

ence between the models, due to the incorrect nonlinear t
in methods~2! and ~3!. The maximum value of the velocity
in the simulations is at the upper end of the range of velo
ties that can be used in a lattice Boltzmann simulation a
the value ofg used is at the upper limit of values for whic
the incompressible limit holds~at least for the value ofz used
here!. Thus we expect that the magnitude of the errors p
duced due to methods~2! and ~3! not satisfying the correc
Navier-Stokes equation will typically be no larger than t
differences measured here. The results suggest that, alth
the differences are small, at high values oft it is inadvisable
to use method~3!, while at low values oft it is inadvisable
to use method~2!. At intermediated values, for examplet
51, the results differ by about 0.01%, which is too small
make a significant difference to a simulation but the accur
can be improved by using method~4!. At low t the differ-
ence r24 is O(1024) and at hight the differencer34 is
O(1024). These are of the same order of magnitude as
estimation of the compressibility error forg50.0001, see
Fig. 4, and the estimation of the discretization error, see S
V. Therefore we do not expect errors due to the anomal
term in Eq. ~31! to swamp the results, however, in som
simulations it may be the largest source of error and so
advisable to reduce it by using method~4!.

C. Gravity in an immiscible fluid model

We now consider the body force applied to an immiscib
binary fluid. This was done using the model of Orland
et al. @29#, where the fluid is described in terms of the tot
densityr and the density difference between the two flui
Dr. This was done using method~3! for the relaxation times
tD50.8, tr50.9, r051 and for an interaction strengthl
51.1. The immiscible binary fluid was initialized with th
two fluids separated by a horizontal interface. The up
fluid has Dr negative. Gravity was applied to both fluid
with strengthrg5@(ga(r2Dr)1gb(r1Dr)#/2, wherega
,gb . At temperatureT50.5 we expect thatur/Dru.2 in
the absence of gravity@29#. Figure 10 shows the value of th
modulus of the ratior/Dr at different depths for the immis
cible fluid whenga50.0001 andgb50.0002. At the inter-
face the value ofur/Dru is different from 2.0 by no more
than 4%. Away from the interface the ratio appears cons
with depth, and hence also with density. Thus the value og
in both fluids is given by

g15@ga~111/2!1gb~121/2!#/2,
~37!

g25@ga~121/2!1gb~111/2!#/2.

Figure 11 shows the variation in density with depth for t
immiscible fluid for two different sets of valuesga andgb .
The values are shown in Table I as are the values ofg1 , g2
in the upper and lower fluids, respectively. Straight lin
with gradients 4r0g are also shown in Fig. 11. The agre
ment between the actual gradients and the predicted gr
ents is good and reinforces the use of Eq.~37! for calculating
g1 and g2. Method ~3! was preferred over methods~2! and
~4! here since the nonlinear term of the Navier-Stokes eq
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tion is zero and it is not clear how replacingf̄ (r,u) with
f̄ (r,u* ) would affect the thermodynamical properties of t
fluid mixture, and over method~1! since it can be applied fo
a larger range ofg.

Other schemes have also been proposed for multifl
simulation. Shanet al. @11,24# consider a model in which the
fluids are separated by an intersite force that is introduce
the same manner as the body force in method~2!. For such a
model there is no thermodynamical equilibrium to be
fected so method~2! can be applied@23#, however, given the
errors involved in method~2!, particularly at lowt, method
~4! might be better applied in such cases.

VII. CONCLUSION

Different methods have been considered for introducin
body force, in the incompressible limit, into the lattice Bo
zmann model. Method~1! introduces gravity by including an
additional term in the equilibrium distribution function

FIG. 10. The modulus of the ratior/Dr as a function of depth
when gravity is applied to a binary fluid with a horizontal interfa
between the fluids. Gravity was applied withga50.0001 andgb

50.0002. The height is measured in lattice sites.

FIG. 11. The density as a function of depth for case~i! (3) and
case~ii ! ~1! shown in Table I. Also shown are straight lines wi
gradients 4r0gi . The density is measured in particles per site a
the height in lattice sites.
id
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which produces an altered pressure term—the difference
responding to a gravitational potential. This approach is
stricted to simulations where there is no density change
the density change is small enough that it can be neglec
Method ~1! was seen to be capable of simulating Poiseu
flow ~where there is no density change! correct to the com-
puter accuracy. When a density gradient is present, me
~1! performs less well than the other methods consider
even when the density variation is small. The difference
tween the accuracy of method~1! and the other methods ca
be as large as an order of magnitude wheng is within the
incompressible limit. Despite this the error was observed
be little more than the computer accuracy of a 32-bit sim
lation when the density variation across the fluid was 0.2

Method ~2! introduces gravity into the lattice Boltzman
model by considering the equilibrium distribution function
be a function, not of the lattice Boltzmann veloci
(( i f iei /( i f i), but of an ‘‘equilibrium velocity’’ defined as
the sum of the lattice Boltzmann velocity andtF/r, whereF
is the body force due to gravity. Method~3! introduces grav-
ity by adding a term to the collision function, which is pro
portional toFaeia . For both these methods, if we define th
fluid velocity, v, to be the sum of the lattice Boltzman
velocity and F/2r, then the models satisfy~up to second
order! the continuity equation and an equation similar to t
Navier-Stokes equation. The difference is an additional te
of orderO(Fu). Method~4! introduces gravity by consider
ing the equilibrium distribution to be a function of an altere
velocity and by adding an additional term to the collisio
operator. In this method the introduction of gravity can
thought of as being made up from a combination fro
method~2! and a combination from method~3!. The relative
strengths of the contributions are selected to ensure tha
technique satisfies the exact~up to second order! Navier-
Stokes equation in the velocityv. Within the incompressible
limit methods~2!, ~3!, and ~4! were found to compare wel
with theory in situations where the nonlinear term of t
Navier-Stokes equation is zero. When the nonlinear term
nonzero an observable difference is found between meth
~2! and ~3!, which have the wrong nonlinear term, an
method~4!, which has the correct nonlinear term. This d
ference is small but under certain circumstances is la
enough to influence the simulation results, in which ca
method~4! is an improvement over the other methods.

The introduction of gravity into a two-phase model w
also considered. Here the error introduced by the incor
nonlinear term when method~3! is used has to be weighe
against any effect of using an altered ‘‘equilibrium velocity
rather than the true velocity in the definition off̄ i may have
on the thermodynamical properties of the fluid.
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Fig. 11 and the values ofg1 andg2 calculated using Eq.~37!.

Case ga gb g1 g2
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APPENDIX A: CHAPMAN-ENSKOG EXPANSION FOR A
LATTICE BOLTZMANN MODEL INCORPORATING

GRAVITY

Here we wish to consider the Chapman-Enskog expan
of the Boltzmann equation

f i~r1ei ,t11!2 f i~r,t !52
1

t
~ f i2 f̄ i !1m

D

bc2
Faeia ,

~A1!
s.
g

n

where

f̄ i5Ei8~r,u1nw!, ~A2!

w5tF/r andEi8 is defined by Eq.~13! where we expand

f i5 f i
(0)1e f i

(1)1e2f i
(2) , ] t5e]1t1e2]2t , ]a5e]1a ,

~A3!

f̄ i5 f̄ i
(0)1e f̄ i

(1)1e2 f̄ i
(2) , Fa5eF1a , andf5ef1 .

Substituting the expansion ofFa andf into E8 gives
E8S r,u1e
nt

r
F1D5

¦

rF12d0

b
1

e lf1D

bc2
1

D

c2b
eiaua1

enDt

c2br
eiaF1a

1
D~D12!

2c4b
S eiaeibuaub12en

t

r
eiaeibF1aub1e2

n2t2

r2
eiaeibF1aF1bD

2
D

2c2b
S u212en

t

r
uaF1a1e2n2

t2

r2
F1

2D G , i 51,2, . . . ,b

rFd02
e lf1D

c2
2

u2

c2
2

2ent

c2r
uaF1a2

e2n2t2

c2r2
F1

2G , i 50.

~A4!

From this we getf̄ i
(0)5E(r,u),

f̄ i
(1)55 rF lf1D

bc2
1

nDt

c2br
eiaF1a1

nD~D12!

c4b

t

r
eiaeibF1aub2

nDt

c2br
uaF1aG , i 51,b

rF2
f1D

c2
2

2nt

c2r
uaF1aG , i 50

~A5!

and

f̄ i
(2)55 rFn2D~D12!

2c4b

t2

r2
eiaeibF1aF1b2

n2Dt2

2c2b2r2
F1

2G , i 51,2, . . . ,b

rF2n2t2

c2r2
F1

2G , i 50,

~A6!
ond
from which we find

(
i

f̄ i
(1)50, (

i
f̄ i

(2)50, (
i

f̄ i
(1)eia5ntF1a ,

(
i

f̄ i
(2)eia50, ~A7!
and

(
i

f̄ i
(1)eiaeib5nt~F1aub1F1bua!1 lrf1dab .

Now, the expansion of the Boltzmann equation up to sec
order ine is
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e~]1t f i
(0)1eia]1a f i

(0)!1e2S ]2t f i
(0)1]1t f i

(1)1eia]1a f i
(1)

1
1

2
eiaeib]1a]1b f i

(0)1
1

2
eia]1a]1t f i

(0)

1
1

2
eia]1a]1t f i

(0)1
1

2
]1t]1t f i

(0)D
52

1

t
~ f i

(0)1e f i
(1)1e2f i

(2)2 f̄ i
(0)2e f̄ i

(1)2e2 f̄ i
(2)!

1e
mD

bc2
F1aeia . ~A8!

This givesO(e0),

f i
(0)5 f̄ i

(0) , ~A9!

O(e),

]1t f i
(0)1eia ]1a f i

(0)52
1

t
~ f i

(1)2 f̄ i
(1)!1

mD

bc2
F1aeia ,

~A10!

andO(e2),

]2t f i
(0)1]1t f i

(1)1eia]1a f i
(1)1

1

2
eiaeib]1a]1b f i

(0)

1
1

2
eia]1a]1t f i

(0)1
1

2
eia]1a]1t f i

(0)1
1

2
]1t ]1t f i

(0)

52
1

t
~ f i

(2)2 f̄ i
(2)!. ~A11!

We can now sum Eqs.~A10! and~A11! and their product
with ei where ( i f i

(1)5( i f i
(1)eia5( i f i

(2)5( i f i
(2)eia50.

Summing Eq.~A10! gives

]1tr1]1arua50, ~A12!

while multiplying by eib before summing gives

]1trub1]1aruaub52
~12d0!

D
c2]1br1~n1m!F1b .

~A13!

Summing Eq.~A11! gives

]2tr1
1

2
]1a~n1m!F1a50, ~A14!

where we have used Eqs.~A12! and ~A13!. Multiplying by
eig before summing gives

]2trug1
1

2
]1t~n1m!F1g1]1ant~F1gua1F1aug!

1]1glrf15n]1a]1arug1z]1g]1arua , ~A15!

where we have used
(
i

eiaeib f i
(1)5nt~F1aub1F1bua!

2t]1tS r~12d0!c2

D
dab1ruaubD

2t]1g

rc2

~D12!
~uadbg1ubdag1ugdab!

1rf1ldab , ~A16!

which is found from Eq.~A10!. Combining Eqs.~A12! and
~A14! gives

] tr1]aFrua1
1

2
~n1m!FaG50, ~A17!

while combining Eqs.~A13! and ~A15! gives

] tFrua1
1

2
~n1m!F1aG1]b@ruaub1tn~uaFb1ubFa!#

52]aS r~12d0!c2

D D1n]b]brua1z]1a]1brub

1~n1m!Fa2 l ]arf. ~A18!

APPENDIX B: ANALYTICAL RESULTS

We now consider exact analytical solutions@25,26,30# for
methods~1!–~4! applied to a two-dimensional hexagon
grid (D52,b56). In doing this we assume a steady soluti
invariant in thex direction. This steady state implies

f 0~z!5 f̄ 0~z!, f 2~z!5 f̄ 2~z!, f 5~z!5 f̄ 5~z!, ;z,
~B1!

where ei5sin(pi/32p/6)êx1cos(pi/32p/6)êz , êx and êz
are unit vectors in the horizontal and vertical directions,
spectively, and gravity acts in thez direction. We are solving
the lattice Boltzmann equation,

f i~r1ei ,t11!2 f i~r,t !52
1

t
~ f i2 f̄ i !1m

D

bc2
Faeia ,

~B2!

where

f̄ i5Ei8~r,u1nw! ~B3!

and w5tF/r. This represents method~1! for l 51, m5n
50, method~2! for m51, l 5n50, method~3! for n51, l
5m50, and method~4! for l 50, m5(2t21)/(2t), n
51/(2t). We also definev according to Eq.~16!. Now
( i f i5( i f̄ i and ( i f ieix5( i f̄ ieix , while ( i f ieiz5( i f īeiz
1ntFz . This gives

f 1~z!1 f 3~z!1 f 4~z!1 f 6~z!5 f̄ 1~z!1 f̄ 3~z!1 f̄ 4~z!1 f̄ 6~z!,

f 1~z!1 f 3~z!2 f 4~z!2 f 6~z!5 f̄ 1~z!1 f̄ 3~z!2 f̄ 4~z!2 f̄ 6~z!,

~B4!
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f 1~z!2 f 3~z!2 f 4~z!1 f 6~z!5 f̄ 1~z!2 f̄ 3~z!2 f̄ 4~z!1 f̄ 6~z!

2
2

A3
tFz~z!.

Assuming thatux(z)50, ;z these have solution

f 3~z!5 f 4~z!, f 1~z!5 f 6~z!, f̄ 3~z!5 f̄ 4~z!, f̄ 1~z!5 f̄ 6~z!,

~B5!

f 1~z!5 f̄ 1~z!2
ntFz~z!

2A3
, and f 3~z!5 f̄ 3~z!1

ntFz~z!

2A3
.

Now the Boltzmann equation fori 51 andi 53 combined
with Eq. ~B5! gives

f̄ 1~z1A3/2!2
ntFz~z1A3/2!

2A3

5 f̄ 1~z!2
ntFz~z!

2A3

1~n1m!
Fz~z!

2A3
~B6!

and

f̄ 3~z2A3/2!1
ntFz~z2A3/2!

2A3

5 f̄ 3~z!1
ntFz~z!

2A3
2~n1m!

Fz~z!

2A3
. ~B7!

Replacingf̄ i with Ei8(r,u1nw) in Eqs.~B6! and ~B7!, not-
ing thatc51 in lattice units and replacingz with z1A3/2 in
Eq. ~B7!, gives

r~z1A3/2!H ~12d0!12lf~z1A3/2!1A3uz~z1A3/2!

12Fvz~z1A3/2!1~nt21/2!
Fz~z1A3/2!

r~z1A3/2!
G 2J

5r~z!H ~12d0!12lf~z!1A3uz~z!

12Fvz~z!1~nt21/2!
Fz~z!

r~z! G2J
1A3~n1m!Fz~z! ~B8!

and
r~z1A3/2!H ~12d0!12lf~z1A3/2!2A3uz~z1A3/2!

12Fvz~z1A3/2!1~nt21/2!
Fz~z1A3/2!

r~z1A3/2!
G 2J

2~n1m!A3Fz~z1A3/2!

5r~z!H ~12d0!12lf~z!2A3uz~z!

12Fvz~z!1~nt21/2!
Fz~z!

r~z! G2J . ~B9!

Subtracting Eq.~B9! from Eq. ~B8! gives

2r~z1A3/2!uz~z1A3/2!1~n1m!Fz~z1A3/2!

52r~z!uz~z!1~n1m!Fz~z!, ~B10!

while adding the equations gives

r~z1A3/2!H 2~12d0!14Fvz~z1A3/2!1~nt21/2!

3
Fz~z1A3/2!

r~z1A3/2!
G 2J 14lr~z1A3/2!f~z1A3/2!2~m

1n!A3Fz~z1A3/2!

5r~z!H 2~12d0!14Fvz~z!1~nt21/2!
Fz~z!

r~z! G2

14lf~z!J 1~m1n!A3 f z~z!. ~B11!

Now consider a bounce-back boundary condition betw
the last fluid site atz5z0 and an obstacle atz5(z02A3/2).
This can be expressed as

f 1~z0!5 f 4~z02A3/2!. ~B12!

Using Eqs.~B5! and ~B7! this can be written as

f̄ 1~z0!2
ntFz~z0!

2A3
5 f̄ 3~z0!1

ntFz~z0!

2A3
2~n1m!

Fz~z0!

2A3
.

~B13!

Since f̄ i5Ei8(r,u1nw) this gives the boundary condition

2r~z0!uz~z0!1~n1m!Fz~z0!50. ~B14!

Consider first methods~2!, ~3!, and ~4!, which have l
50 andm1n51. In these cases the boundary condition E
~B14! becomes

2r~z0!vz~z0!50 or r0vz~z0!50, ~B15!

wherer05r(z0). Combining Eq.~B10! with this boundary
condition gives

r~z!vz~z!5r0vz~z0!50, ~B16!
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which shows that the bounce-back condition imposes a c
fined fluid under gravity to be at rest only if the velocity
taken to bev as is the case for methods~2!, ~3!, and~4!.

Settingvz50 in Eq. ~B11! to find the long-term behavio
of the fluid andFz(z)52r(z)g gives

r~z1A3/2!

5r~z!F12A3g/2~12d0!12~nt21/2!2g2/~12d0!

11A3g/2~12d0!12~nt21/2!2g2/~12d0!
G

~B17!

or

r~z!

5r0F12A3g/2~12d0!12~nt21/2!2g2/~12d0!

11A3g/2~12d0!12~nt21/2!2g2/~12d0!
G 2z/A3

.

~B18!

When t51 the density gradient produced by both metho
~2! and ~3! will be the same, although different from th
gradient produced by method~4!, despite it being a compos
ite of the two methods. IftÞ1 the density gradient will
differ between the different methods, for method~3! this will
depend ont and for methods~2! and ~4! the gradient is
independent oft, however these differences will in gener
be small. In the incompressible limit,gz!cs

2 , we expect
A3g/2@(nt21/2)2g2 for the values oft typically used in
lattice Boltzmann simulations; for method~4! this is always
true sincent21/250. In this incompressible limit

r~z!.r0S 12
2gz

12d0
D ~B19!

for each method. It is worth noting that in the compressi
limit the exponential law,r(z)5r0 exp(g8z/cs

2), is obtained
in terms of a rescaled gravity

g85
2cs

2

A3
lnF12A3g/2~12d0!12~nt21/2!2g2/~12d0!

11A3g/2~12d0!12~nt21/2!2g2/~12d0!
G .

~B20!
tt.

e

y

n-

s

e

For method~1! we havel 51 andm5n50. In this case a
similar argument leads to

r~z!uz~z!5r0uz~z0!50, ~B21!

implying that the fluid velocity should be taken asu, and

r~z1A3/2!@~12d0!12uz~z1A3/2!12f~z1A3/2!#

5r~z!@~12d0!12uz~z!12f~z!#. ~B22!

Since method~1! can only be applied if there is a negl
gible change in the fluid density it is not sensible to consi
a density gradient since this is negligibly small. Here w
consider the density variation in this limit to enable a co
parison to be made with the other methods. In this limit
can write

2r~z1A3/2!f~z1A3/2!22rf~z!

.2r~z!@f~z1A3/2!2f~z!#

.A3r~z!¹f~z!. ~B23!

Or, to the same approximation

2r~z1A3/2!f~z1A3/2!22rf~z!.A3r~z!¹f~z!.
~B24!

This approximation allows Eq.~B11! to be expressed as

r~z1A3/2!@2~12d0!1A3g#.r~z!@2~12d0!2A3g#
~B25!

giving

r~z!.r0S 12
2gz

12d0
D ~B26!

as was found for the other methods.
s,
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