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Gravity in a lattice Boltzmann model
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In this paper we consider the introduction of a body force, in the incompressible limit, into the lattice
Boltzmann model. A number of methods are considered and their suitability to our objectives determined.
When there is no density variation across the fluid, gravity can be introduced in the form of an altered pressure
gradient. This method correctly satisfies the Navier-Stokes equation; however, if there is a non-negligible
density variation preseriproduced by the body force or otherwighis method becomes less accurate as the
density variation increases and the constant density approximation becomes less valid. Three other methods are
also considered for application when there is a non-negligible density variation. The equations of motion
satisfied by these models are found up to second order in the Knudsen number and it is seen that only one of
these methods satisfies the true Navier-Stokes equation. Numerical simulations are performed to compare the
different models and to assess the range of application of each.

PACS numbds): 47.11+j, 02.70—c

[. INTRODUCTION Each link has lengtle and directiore, i=1, ... b. In prac-
tice the grid is either a two-dimensional hexagonal d&dl
A recent development in the computational study of fluids(D=2, b=6) or a four-dimensional face-centered hypercu-
has been the lattice Boltzmann modli&4] which has de- bic lattice [17,18 (D=4, b=24). The technique involves
veloped from the lattice-gas automdta]. This has been simulating the Boltzmann equatidt9,20
used successfully to simulate many problems including mag-

netohydrodynamicg6], turbulence[7,8] colloidal suspen- fi(r+e,t+1)—f;(r,t)=Q;(r,t). D
sions[9], and multiphase flo10-13. Lattice Boltzmann
simulations have traditionally been performed on a regulaiThe functionsf;(r,t), i=1, ... b are the distribution func-

grid, however, it has recently been shown that, with the intions along theb links at positionr and timet. The fluid
clusion of an interpolation step, the technique can be appliedensity,p, and velocity,u, can be found from the distribu-
on an irregular grid with the introduction of only a small tion functions as
error[13].

There is a wide range of fluid problems in which gravity
and buoyancy effects are significant, for example, the study P:Z fi andpua=2i fi€ia, ()
of water wave$14—1§. In this paper we consider the inclu-

sion of a body force in the lattice Boltzmann scheme. Wehare we have used the notatiog)(,=e,,,. The collision
. g . . la *
begin by describing the lattice Boltzmann model and show erm, Q,(r,t), is usually taken to be the single relaxation

ing that the model does indeed mimic the Navier-Stoke%me or Bhatnagar-Gross-KrodlBGK) operator{ 21,6]
equation. Different methods for implementing gravity into '

the model are then considered and their ability to satisfy the 1 -

Navier-Stokes equation is assessed. A number of simulations Qi(r,t)y=—=[fi(r,t)—f;(r,t)], 3
involving gravity are presented to verify the theoretical con- T

clusions. _

Here we are concerned with simulating gravity in the in-wheref; is the equilibrium distribution function andis the
compressible limit of a linearly varying density. In this limit relaxation time, where>1/2. The form of this equilibrium
we requiregz<cZ, whereg is the gravitational strengtlz,is  distribution function must be chosen so that the fluid mass
the vertical extent of the simulation, ang is the speed of and momentum are conserved and so that the resulting con-
sound. In this limitg can have a significant value so it is tinuum equations describe the hydrodynamics of the fluid
clearly important that the introduction of gravity does notbPeing simulated12]. The correct form of the equilibrium
affect the existing scheme, other than by introducing the redistribution also ensures that the fluid is isotropic and Gal-

quired body force, since terms of ord®(g) cannot be ne- ilean invariant[22]. The following equilibrium distribution
glected in the fluid equations. function produces an isotropic, single phase fluid that satis-

fies the continuity and Navier-Stokes equations:

Il. LATTICE BOLTZMANN MODEL —

fi(r,)=Ei(p,u), 4
The simulation described here is performed on a

D-dimensional regular grid with links at each grid point. where
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1-d, D D(D+2) , Du?
+ e-u U) = —1, |:l,. ,b
p( b ¢ 2 O ) 2¢?b
Ei(p,u)= %)
u2
P(do_ —), i=0
C

andd, is a constanf3,7]. .o [c*(1—dp) 10
s— T ——
D

IIl. CHAPMAN-ENSKOG EXPANSION

The derivation of the continuity equation and the Navier- V. GRAVITY IN A LATTICE BOLTZMANN MODEL

Stokes equation from the equilibrium distribution is normally We now wish to consider a lattice Boltzmann model that
carried out using a Chapman-Enskog expansion, fOHOWinQNiII mimic the Navier-Stokes equation with a body force.
the lattice gas derivation of Fris@t al.[17]. To perform the
Chapman-Enskog expansion we must first Taylor expand Eq. A. The classic Boltzmann equation
(1): :

The Boltzmann equation for a fluid with a body force per

unit massF is [19]

1
fi(r“‘a Jq+ :I.)—fi(r,’[)2 o t€,0,Tt —eia&a(eiﬁﬁﬁ-l— (9t)

2 G+ Codrn f+F 00, = Q(F), (1D)
+ 2 a4, 3) (1) 6) Whergf(c,r,t)dcdr is the number of moI(_apuIe_s at tinhevith
2 velocities in the range— c+dc and position in the range
Expanding the population functions and the time and space_>r+dr and
derivatives in terms of the Knudsen numiyép,17, €, we d
get Jea=Zca (12)

_ (0 1 2£(2 . .
fi_fi( )+ ffi( e fi( o The difference between the Boltzmann equation when there

= €0y + 2yt - - -, (77 1snho body force present and when thesea body force is an
extra term¥ ,d., f. In the lattice Boltzmann equation we are
= €dy; . looking to add a similar term to incorporate a body force.

Since, however, the velocity of all the “particles” is con-
stant in the lattice Boltzmann model, we cannot simply in-
troduce an expression with exactly the same form but must
4nhstead look to add a term that will modify the fluid momen-

Substitution of Eq.(7) into Eq. (6) and considering sepa-
rately the termsO(e) and O(e?) we can perform a

Chapman-Enskog expansion to obtain the continuity equ
tion,

tum.
&tp+aapua:0 (8)
and the Navier-Stokes equation B. Combining the grawrt])q/etterz]rorr& an)d the pressure tensor—
GipUqt 3 ppUgU,= — 07,3[@025“3 +vdgdgpu, ~ When a body force is included in the Navier-Stokes equa-
D tion it is common to express the force in terms of the gravi-

+0,L05pU 9) tational potential—pV ¢. When this approach is taken, and

R the density variation produced by the body force is negli-
where v=c?(r—1/2)/(D+2) and ¢=(7—1/2)[2c?/(D gible, the Navier-Stokes equation incorporating the body
+2)—c?(1—dy)/D] are the kinematic and bulk viscosities. force can be expressed in the same form as in the absence of
The pressure term in Eq9) is p=pc?(1—dy)/D, which  gravity but with an altered pressum:—p+ p¢. Following

gives the speed of sound as this approach we can redefine the equilibrium distribution:
1-d, I¢D D D(D+2) Du? .
+—t—a-Ut——(g-u)>— , i=1p
p( b bc?  ¢%b 2c*b (8 2¢?b
Ei’(pvu): (13)
l¢D u?

d - o T ] IZO!

p| Yo 2 2
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with | =1. The parametdris introduced here in such a way This is a combination of method®) and(3) with the coef-
thatl =1 corresponds to gravity being incorporated as a presficients selected to ensure the model satisfies the continuity
sure term and=0 corresponds to the standard lattice Bolt-and Navier-Stokes equations for a fluid under the influence

zmann model without gravity.

C. Calculating the equilibrium distribution with an altered
velocity—method (2)

Gravity can be introduced into the lattice Boltzmann

of a body force. This will be shown in Sec. IV F.

F. The equations of motion for a lattice Boltzmann model
incorporating gravity

Now consider the following Boltzmann equation:

scheme by considering the momentum change produced by a

body force[23]. If a gravitational forceF is acting, then at
every timestep there is a change of momenthP=F. To

1 — D
fi(H—q ,t+ 1)—f|(l’,t)= - ;(fi_fi)‘l‘mEFaeia,

incorporate this into the model an equilibrium distribution (21)
fir,)=Ei(p,u*) (19 where
is used wheres* is the “equilibrium velocity” [24], which T,=E/(p,u+nw) 22
I I 1 ’

is given by[23]

w=17F/p and E/ is defined by Eq.(13). This represents
method(1) for I=1, m=n=0, method(2) for m=1,l=n
=0, method(3) for n=1,I=m=0, and method4) for |
=0, m=(27—1)/(27), n=1/(27). As before, we wish to
perform a Chapman-Enskog expansion by expressing

pu* =pu+7F. (15
Hereu is defined, as before, yu,==,f;(r,t)e;, . The fluid
momentumpu is defined[24] to be the average of the mo-
mentum before the collisiogu, and the momentum after

the collision,pu+F:

fi= fi(o)-I— Efi(1)+ ezfi(z) , 0= €dy+t €29y, andd,=edy,,

(23

where the notation ¢;,),=d1, has been used. The body
forceF,, and hencep, are of ordere [25]. This can be seen
by assuming thafF ,=0(e° and considering the zeroth-
order expansion of the Chapman-Enskog expansion:

1
pva:pua+§Fa' (16)

D. Adding an additional term to the Boltzmann
equation—method (3)

Gravity can also be introduced into the lattice Boltzmann
scheme in a manner similar to that adopted for the lattice-gas
model[17], that is, by adding a term to the collision function
that modifies the distribution functidi25,26. Here the Bolt-
zZmann equation is

m7D
bc?

fO=f,+ F€ia. (24)

Multiplying this expansion bye;; and summing gives

fi(r+e,t+1)—f,(r,t)=Q;(r,t), (17

| i

where (25
1 = b But 3, fie;5= th
Qi(r)=——[firH—firH]+ FFaeia: (18) ut 2iTi€p=pUp SO WE Must have
c
— Ve, + @ea +...|=—(n+
andu andf; are defined in the usual wapu,=3;fe;, and € E. fieis GEi fi”eis (n+mFg,
fi=E(p,u). The fluid momentum is defined, as before, (26)

throughpv ,=pu,+ 3F, .
INPva=platz which requiresF,=O(e) or fV=0(e1), both of which
are in contradiction of the hypothesis. Thus, sificés now

. . ) . a function ofF, we also need to expand
Here we consider a new method for introducing gravity

into the lattice Boltzmann model. This has the collision func-
tion given by

E. Composite model—method(4)

f_i=Ti(O)+ e?i(l)-l— 62?i(2), Fo=€Fi1,, andp=¢€d;.
(27)

_ 1 e 27— Performing a Chapman-Enskog expansion, see Appendix A,
i(r == ZhnH) =fi(rHI+ —= @F“ei“’ we obtain the following macroscopic equations:
(19 1
where dp+d, pu,+ E(n+m)Fa =0 (28
f=E(p,u+F/2p). (20 and
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1 e
3 pUat 5 (N MIF 14|+ IplpUligt T(UGF 5+ UgF )] P||2UatFs  TFaFg|D(D+2)ei081
T p p? 2¢*b
p(1—dg)c? 2
2¢%b P p?
+(N+M)F,—1d,pd. (29)

pl27F,u, TzFaFa )
—= |, i=0. (32)
. . T\ pc p°c

For method(1) we havel =1, m=n=0 in which case Egs.

(28) and(29) are the continuity and Navier-Stokes equa’[ionsThe difference contains tern@(uF/p) andO((F/p)?). It is

for a fluid with velocityu and a body forcé== —pV¢. For .\ 04 in the derivation of the e : ;

- o . quations of motion that
methoEds((Zg,S)(S),;(ané)M) Webhave_:tlt—r?, rr:+n—1 '3 Wg'Ch. <cg and, in the incompressible limit, we also half|
case =qs an can be whntteriup fo second orderin <c?/z. This gives a measure on the size of the terms in Eq.

) (32). Thus, in general, the difference expressed in B§)

will be small. AlthoughF/p is small it can still produce a
significant effect. The difference expressed in B39) being
small does not imply that the density change is small, as
required for method1). The differences)(?—0* and
Q®—0® will contain terms of the same order. We note
that while the values of)(Y)— (2 are different for each,
5(QM-0®)=0 and=; (0 -0P)e,=0. This means
that in simulations where metho(®), (3), and(4) satisfy the
same equations of motion, that &(u,Fz+ugF,)=0,

dp+d,pv,=0 (30

and

&tpva+ &ﬁpvavﬁ-l— (9[;(”7'_ 1/2)(UQFB+ UBFQ)

p(1—dg)c? there will be a difference in the values 6f between the
= q D +vdpdppvatLdiadippptFar  different models, but the values pfandu should, however,
be identical.
(31)

V. ERRORS IN A LATTICE BOLTZMANN SIMULATION

wherev is defined, as before, to be the mean fluid velocity:  1are are a number of sources of error that can affect a
pU o= pU,+F /2. Equationd30) and(31) are the continuity  |a¢ice Boltzmann simulation. Rounding errors will always
and the Navier-Stokes equations for a fluid with veloaity e present in any numerical model. Here double precision
and a body forceF with an additional termas(n7  4ithmetic was used to give results with 15 significant fig-
—12)(u,F g+ ugF,). This term may be small for the values g5 |n single precision simulations a precision of seven
of F_con5|dered here but will only be zero for=1/(27), significant figures would give an error Gf(10°7).
that is for method4). In the derivation of the Navier-Stokes equation described
in Sec. Ill only terms up td(e?) are considered—higher
order terms are neglected. The Knudsen numbegis the
ratio of the grid separation to the typical macroscopic length
The Navier-Stokes equation is recovered from E2f) in the simulation. Thus we must ensure thas small in any
for =1 andm=n=0, only when the ternv,p¢ can be simulation to minimize the error introduced by neglecting
expressed apd,¢. Thus we only expect method) to be  higher order terms. Smad is equivalent to having a large
appropriate in situations where there is no density changaumber of grid points corresponding to the shortest length
across the fluid, or the density change is negligibly smallscale in the simulation. Here we typically use a grid with 64
This is common to any situation where gravity is introducedpoints, which gives= 1/(64\/5/2), since the length scale is
through a potential that modifies the pressure term. Methodghe grid size and the grid is orientated so that the horizontal
(2) and(3) can be applied where there is a density change bugeparation of grid points is/3/2. This also relates to the
we are looking at a steady state solution, whégéu,F;  spatial discretization error, which is introduced because we
+ugF,)=0. Two situations were this can occur are consid-are mimicking a continuous system by a grid simulation. A
ered in this paper. First, when the steady state velocity i$mall Knudsen number that implies a significant number of
zero and second, when the nonlinear term in the Naviergrid points along any length scale also implies a small spatial
Stokes equation is zero and the induced velocity is parallel taiscretization error. Time is also discrete in the lattice Bolt-
F. Method(4) is applicable in any situation where gravity is zmann model and the temporal discretization error must also
applied in the incompressible limit. In general the variationbe small if a simulation is to produce meaningful results.
between method&), (3), and(4) will depend on the values That is, a typical macroscopic time scale must be large with
of u andF through the anomalous terap(u,Fs+UugF,).  respect to the discrete time step. Siegés O(1) this is also
The difference between the lattice Boltzmann operatorsatisfied by a small Knudsen number.
0@ -0 for methods(2) and(3), acting on the same dis- It has been shown by many authors that, provided the
tribution functionf;, is boundary conditions are suitably implemented, the lattice

G. Review of methods
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Boltzmann model is a second-order scheme. This was stud- T T T T T T

ied by Nobleet al. [27] who considered flow between two N — —1=1,000
parallel porous plates; one stationary and one moving. They 0 N\ - = = £=2,000"]

showed that the lattice Boltzmann model applied with the NN — t=3,000
boundary conditions used here is a second-order scheme. For 40 - NN o '.‘_‘_‘=4’°°°-

a length scale of 643/2 lattice units they find the average z 1=5000
error to beE=3x10 4, whereE is defined by 30 = .
- 20 |- =

> Ju-ul

E=—— (33 10 - -

Sl R
v 0 L L L L A SAIAN

. 0.85 090 095 1.00 105 1.10 1.14

and whereu is the simulated velocityy is the analytic ve- p
locity, and the summation is over all points in a line perpen-
dicular to the two plates. This gives an estimation of the FIG. 1. Density as a function of height at selected times when
discretization errors for a simulation with length scalegravity is applied using metho@) whenF=—0.00%,. The den-
64\/§/2_ sity is measured in particles per site and the height in lattice sites.

We note that the lattice Boltzmann equation, EL, can
be viewed as a finite difference equation. Although the disprecision. The single phase simulations were performed on a
cretization is first order the lattice Boltzmann method is aSun server, each simulation taking no more than 20 CPU
second-order scheme as discussed above. The second-Oreighutes. The immiscible fluid simulations were performed
nature of the lattice Boltzmann model is further discussed byn the CM-200 at Edinburgh University.
Sterling and Che28]. Under certain special circumstances
a second-order difference scheme on a regular grid can give
an exact solution with zero discretization error. This occurs if A. Density gradient
the terms in the expression for the discretization error are A system was initialized on a 6464 grid with zero ve-

identically zero. One such case is Poiseuille flow, which islocity and initial densityp,=1. An impermeable boundary
created between stationary parallel vertical walls when ga¢ placed at the bottonz£ 0) of the grid, which also acted
fluid is driven by gravity. The steady-state solution can easzg 5 boundary at the top; continuous boundary conditions
ily be found since the Navier-Stokes equation reduces to \yere applied at the other two edges. Gravity was then ap-
5 plied using each of the methods and the density measured
9°ULX) (34) every 1000 timesteps along a vertical line through the middle
ENG -9 of the grid. The results are shown in Fig. 1 at times 1000,
2000, 3000, 4000, and 5000 timesteps when gravity is ap-
which has the solution plied with strengthg=0.001 using method3) with 7=1.0.
The density profile is seen to “oscillate” about its final po-
g , sition for several thousand timesteps before reaching its final
Uy(x) = Z_V(X —-L9) (39 state. The final state density distribution is found to lie close
to the distribution fort=3000 timesteps in Fig. 1 and so is
where the walls are at==*L. The truncation error for a not included for Clarity. The observed “oscillations” are jUSt

second-order central difference scheme depends on the dée damping of sound waves due to the fact that the initial
rivatives *u,(x)/ax*, #%u,(x)/ax®, ..., which are all zero density is uniform.
in this special case. Thus we expect to be able to simulate This was repeated for each of the methodsgfer0.001,
Poiseuille flow using the lattice Boltzmann model to within 9=0.0001, andg=0.00001 and forr=0.55, 1.0, 5.5, and
the truncation error of the computg27]. 50.5. The simulations were run until the final density varia-
The lattice Boltzmann model satisfies the Navier-Stokedion with depth settled down to a steady state. The different
equation in the nearly incompressible limit. By introducing density variations were then compared with each other and
gravity we inevitably introduce a compressibility error into With the analytic expressions for the incompressible limit,
the system. Here we consider a body force in the incomwhich are found in Appendix B. The density differencg,
pressible limit,gz<cs, and consider the compressibility er- for a,be{1,2,3,4T} is defined to be,,=p® —p(*, where

rors that this introduces into the model. p(® is the steady state density produced when metabis
applied fora=1, 2, 3, and 4 and the density predicted by the
VI. NUMERICAL SIMULATIONS theoretical expression, EqB19), for a=T. First we con-

sider the differences between meth@d and method(4).
Methods(1)—(4) were implemented so that the affect they This is shown in Fig. 2 wheg=0.001 and there is a signifi-
have on a fluid simulation could be observed and any differcant density change across the fluid of about 20%. The den-
ences between the models could be considered. The value sity variation produced by methad) is seen to be approxi-
do=0.5 was used throughout. The simulations were writtermately linear while for methodl) it is curved. This is
in FORTRAN using double precision arithmetic giving 64-bit expected since the conditions here clearly break the assump-
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FIG. 4. The density differencdg,| and|pr4| as functions of

FIG. 2. The density variations with height produced by methodsgepth for different values af. The difference$pr,| are represented

(1) and(4) wheng=0.001. The density is measured in particles perpy the thin lines and the differencésr,| by the thick lines. The
site and the height in lattice sites. height is measured in lattice sites.

tion thatp is constant as required in methot). Wheng  tion is only about 1%. The difference between the results for
=0.00001 and the density variation is about 0.2%, the denmethod(1) and the analytic result are also shown in Fig. 4.
sity variation is considerably smaller and so is the differencan each case the difference is generally larger. For
between the density variation produced by methddsand  =0.00001 it isO(10 %), as was seen in Fig. 3 and is not
(4) as shown in Fig. 3. The difference here is not signifi-significant. Forg=0.0001 the error i©(10 %), which is an
cantly larger than the computational rounding error in a stanprder of magnitude larger thdpr,| suggesting that the con-
dard 32-bit calculation. Wheg=0.0001 the density varia- stant density approximation is not valid and methdy [or

tion across the fluid is about 2% and the difference betweemethods(2) or (3)] would be preferred. Fog=0.001 the
the results|p; =O(10~°). The difference between the den- gifference |p4| can be larger than 1% and is typically
sity variation produced by methdd) and the analytic results  double |pr,| although the differences are for different rea-
in the incompressible limitgz/cZ<1, is shown in Fig. 4 for  sons. The large value &p,| is due to the density gradient
the three values of considered. The ratioglgz is 4.5, 45,  that cannot be approximated to zero. The errdpin| is due
and 450 forg=0.001, 0.0001, and 0.00001, respectively.to gz=0(c?) implying that we are outside the incompress-
For the lowest value of the incompressibility condition is iple limit and so we do not expect a linear density change.
fully satisfied and the variations are not much larger than theor both methods the difference between the simulation re-
numerical rounding error when standard 32-bit precision issults and theory is seen to depend @rsuggesting that in
used. When g=0.001 the incompressibility condition this case the compressibility error is the main source of error.
(gz/c§< 1) is just met sincegz/c§=0.022. Here the agree- The difference between the densities predicted by meth-
ment between the analytical results and the simulation i®ds(2), (3), and(4) are shown in Fig. 5. For each value @f
reasonable with a variation of no more than about 0.01%the densities obtained by metho@ and(4) and hence the
This is no larger than the typical discretization error of difference|p,, are independent of as predicted by Eqg.
O(10™ %), which we would expect in a simulation of this

size. For the Iargeszt value gfthe incompressible limit is nqt 5.0 === §=10.00001
truly satisfied gz/c=0.22), however, even here the varia- -——- g =0.0001
60.0 T T T 55.0 +
50.0 1 z 350 |
40.0
15.0 |
Z 300+ . 1
P24 T 54
\ [} i
200 ] B T 10%:‘2 107 10"“4 10°
100 I 4 |p24|7|p34|
0.0 FIG. 5. The density differencég,, and|ps4 as functions of

4x10® 0 1x10°8 2X1'0.6 3x10° erth for different values of and 7. The differencegp,, are
P independent ofr so, for a given value of the four results for the
four different values ofr lie on the same curve. The other curves
FIG. 3. The difference between the density variations withrepresentps, and are marked 1, 2, 3, or 4 correspondingrto
height produced by method4) and (4) when g=0.00001. The =0.55, 7=1.0, 7=5.5, and7=50.5, respectively. The height is
height is measured in lattice sites. measured in lattice sites.
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(B18). The difference$ps, are increasing functions of, in
agreement with the difference being dependent on a term
containing the factor £—1/2), for 7>1/2. All the relative
differences are observed to increase wgthThe difference
between the results fay=0.000 01 andy=0.0001 and the
difference between the results fge=0.0001 andg=0.001
differing by a factorO(10%). In all the cases considered the
largest value of the differences between the methods is at
least an order of magnitude smaller than the difference be-
tween the results and the analytic expression,(Bd9). For
the lower values ofg (0.0001 and 0.0000Q1 which are
strictly within the incompressible regime, the difference is
greater and at the low values efat which the lattice Bolt-
zmann model is normally run, the difference is greater still: £, 6. The boundary condition applied to produce continuous
for g=0.0001 andr=1 we have|ps/=0(10"°) and|pr,| boundary conditions for methad).
=0(10™ 4. Thus the density gradients produced by the dif-
ferent models are not significantly different when comparedgniia|. To overcome this, the following boundary conditions,
to the error introduced by the incompressibility approxima-gee Fig. 6, were applied after the standard streaming: distri-
tion. bution functions on the penultimate rows are mapped onto
the end rows at the opposite side of the grid. An example of
B. Simulations with nonzero velocities the flow patterns set up is shown in Fig. 7, which agrees with
Two situations are considered where the fluid velocity isEd- (36) to the machine accuracy. Here there is no discreti-
nonzero. Gravity driven Poiseuille flow, where the density iszation error, as discussed in Sec. V and there is no compress-
constant, the velocity is nonzero, and the nonlinear term inPility error since the density is constant.
the Navier-Stokes equation is zero, is a simulation that all
four methods should be suited to. During the time between 2. Changeable flow
the initialization of the fluid as described in Sec. VIA and oy phenomena where the nonlinear term of the Navier-
the formation of the steady state density gradients that wergigyes equation is nonzero are in general more complex and
megsured, the de_nsity and _velocity of the fluid are func_tion%0 not have simple analytic solutions. We expect methods
of time, as seen in Fig. 1, in such a way that the nonlineagy) (3) and(4) to exhibit differences in such situations so
term in the Navier-Stokes equation is nonzero. Thus the difyye consider the evolution of the fluid between the initializa-
ferences between method, (3), and(4) should be observ- ijon described in Sec. VI Azero velocity and constant den-

able in this interim period. sity) and the steady state situation, which was just discussed.
1. Poiseville i The difference between the density and velocity at a point in
- roiseultie low the center of the grid, found using methd@s, (3), and(4),

Poiseuille flow is created between stationary parallel veras a function of time, is shown in Fig. 8 whem=50.5 and
tical walls when a fluid is driven by gravity and has a steadyg=0.0005. This gives2/gz=9 and so is the largest value of
state solution g that could be reasonably used in the incompressible limit.
This value ofg gives a maximum value for the velocity no
g L, ., larger than 0.1. The density differengg,, between methods
Uz (X)= 5= (X*=L5), (36 (3) and(b) can be thought of as relative density differences
sincep=1 at the center of the grid. Relative velocity differ-
where the walls are at= = L. Method(2) has been applied €nces cannot sensibly be considered since the velocity is os-

to simulate Poiseuille floWy23] for a body force that pro-
duces a maximum velocity 0.0005 and meth{8iihas been
applied[25,27] and seen to produce results that are correct
up to the machine accuracy. Poiseuille flow was simulated
here for all four methods. When suitable boundary condi- —0.02 }
tions[27] were applied at the wall boundaries and continu-

ous boundary conditions at the nonwall edges, mettags u,
(3), and(4) all produced the expected flow pattern correct to
machine accuracy for a range of different values @ndg.

Since method4) can be thought of as a composite of meth-

ods(2) and(3) it is hardly surprising that it performs equally

well. Method (1) can also be applied here since there is no -0.06
density variation in the fluid. Since the gravitational potential 0
is a linear function of the vertical position continuous bound-

ary conditions cannot be applied across the open ends; this FIG. 7. The steady state Poisseuille flow simulated using
would produce a large potential difference across the edge @fiethod(1) wheng=0.0001. The pipe width is measured in lattice
the grid that would exactly cancel out the gravitational po-sites and the velocity, in (lattice site¥(time step.

-0.04

10 20
X
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4x10™* ' |pad =|p24 @nd|uzy =|uz4 as predicted.
The results here show that there is an observable differ-

ox10 ence between the models, due to the incorrect nonlinear term
” in methods(2) and(3). The maximum value of the velocity
§ in the simulations is at the upper end of the range of veloci-
o 0 ties that can be used in a lattice Boltzmann simulation and
£ the value ofg used is at the upper limit of values for which

o107 the incompressible limit hold&t least for the value afused

here. Thus we expect that the magnitude of the errors pro-
duced due to method®) and (3) not satisfying the correct
0.0 500.0 1000.0 Navier-Stokes equation will typically be no larger than the
t differences measured here. The results suggest that, although
the differences are small, at high valuesrdf is inadvisable
FIG. 8. The density and velocity differences,, pss, Uz4, @nd  tg use method3), while at low values ofr it is inadvisable
ug, for g=0.0005 andr=50.5. The time is measured in time steps. 5 se method2). At intermediated values, for exampte
=1, the results differ by about 0.01%, which is too small to
cillating about zero, however the velocity differences relativemake a significant difference to a simulation but the accuracy
to the maximum value of the velocity can be considered. Attan be improved by using methadd). At low 7 the differ-
small times|p;, peaks at about 810 * giving a relative  ence p,, is O(10 %) and at highr the differenceps, is
density difference of about810 4, whereagp,, gives a O(10 *). These are of the same order of magnitude as the
much smaller maximum density difference of about 3estimation of the compressibility error fag=0.0001, see
X 1078, Initially the values oflu,, and|us, peak at values Fig. 4, and the estimation of the discretization error, see Sec.
O(10) smaller than the corresponding density differencesV. Therefore we do not expect errors due to the anomalous
Sinceun,,=0(0.1) at these times the relative density differ- term in Eg.(31) to swamp the results, however, in some
ence and the relative velocity differendeelative to the simulations it may be the largest source of error and so it is
maximum value ofu) are of the same order for each com- advisable to reduce it by using methgd.
parison. At later times the peak values |of,| and |us,|
remainO(10) smaller than the corres_ponding densities, how- C. Gravity in an immiscible fluid model
ever, the peak values of the velocity are reduced at these ] ) S
times so the relative velocity differences become larger than W€ now consider the body force applied to an immiscible
the relative density differences at the peaks as time increasgdnary fluid. This was done using the model of Orlandini
The absolute value of all the differences, however, decreasd al-[29], where the fluid is described in terms of the total
with time in an approximately exponential manner at aboul€nsityp and the density difference between the two fluids
the same rate. Ap. This was done using methd@) for the relaxation times
This was repeated for=>5.50, 1.0, 0.55, and 0.505. In 7a=0.8, 7,=0.9, po=1 and for an interaction strength
each case the maximum values pf,| and|u,,| were found =1.1. The immiscible binary fluid was initialized with the
for the different values of andb of interest. The results are two fluids separated by a horizontal interface. The upper
shown in Fig. 9 as a function of the viscosity, an increasingfluid has Ap negative. Gravity was applied to both fluids
function of 7. For both the density and the velocity, the dif- With strengthpg=[(ga(p—Ap) +gp(p+Ap)1/2, whereg,
ferences between metho(®) and (4) are decreasing func- <9p- At temperaturél=0.5 we expect thalp/Ap|=2 in
tions of 7 and the differences between methd8sand(4)  the absence of gravify29]. Figure 10 shows the value of the
are increasing functions of. At r=1(r=1/8) we find modulus of the ratip/Ap at different depths for the immis-
cible fluid wheng,=0.0001 andg,=0.0002. At the inter-

face the value ofp/Ap| is different from 2.0 by no more

107 ' ' ' ' ' than 4%. Away from the interface the ratio appears constant
— gz“ with depth, and hence also with density. Thus the valug of
10 L o—ou, 4 in both fluids is given by
— »¥—X
2 0:=[0a(1+ 112+ gy(1- 1/2) 2,
g 10° | ! (37)
£ 0,=[0.(1-1/2)+g,(1+1/2)]/2.
107
Figure 11 shows the variation in density with depth for the
immiscible fluid for two different sets of valueg, andg,, .
107 — The values are shown in Table | as are the valueg, 0fg,

10° 10° 10" 10° 10" 10

VD in the upper and lower fluids, respectively. Straight lines

with gradients 4,9 are also shown in Fig. 11. The agree-
FIG. 9. The maximum values of the density and velocity differ- ment between the actual gradients and the predicted gradi-
encesp,s, paa, Uss, andus, for g=0.0005 as a function of the ents is good and reinforces the use of B7) for calculating

fluid viscosity, which is an increasing function ef The viscosity is g, andg,. Method (3) was preferred over methodg) and
measured in units oflattice siteg?/(time step. (4) here since the nonlinear term of the Navier-Stokes equa-
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250 T T TABLE I. The values ofg, andg,, used in case§) and (ii) in
Fig. 11 and the values af; andg, calculated using Eq37).
200 - —
Case 9a 9 91 92
150 i (i) 1x10°4 2x10°%  1.25x10°4  1.75x10°%
. (i)  5.0<10° 55x10° 5125<10° 5375x10°°
100 |- - ) .
which produces an altered pressure term—the difference cor-
responding to a gravitational potential. This approach is re-
50 - 7 stricted to simulations where there is no density change or
the density change is small enough that it can be neglected.
0 | | Method (1) was seen to be capable of simulating Poiseuille
1.95 20 205 21 flow (where there is no density char)ga)rrect to the com-
A puter accuracy. When a density gradient is present, method
|p/ap| (1) performs less well than the other methods considered,

even when the density variation is small. The difference be-
tween the accuracy of methdt) and the other methods can
be as large as an order of magnitude wlgeis within the
incompressible limit. Despite this the error was observed to
be little more than the computer accuracy of a 32-bit simu-
_ lation when the density variation across the fluid was 0.2%.
tion is zero and it is not clear how replacirfgp,u) with Method (2) introduces gravity into the lattice Boltzmann
f(p,u*) would affect the thermodynamical properties of the model by considering the equilibrium distribution function to
fluid mixture, and over method) since it can be applied for be a function, not of the lattice Boltzmann velocity
a larger range of. (Zifig/2if;), but _of an “equilibrium v_elocny” defined as
Other schemes have also been proposed for multifluidhe sum of the lattice Boltzmann velocity an#i/p, whereF
simulation. Sharet al.[11,24 consider a model in which the IS the body force due to gravity. Meth@8) introduces grav-
fluids are separated by an intersite force that is introduced iffy by adding a term to the collision function, which is pro-
the same manner as the body force in mett®dFor such a po_rtlonal toF e, . For both these methods, !f we define the
model there is no thermodynamical equilibrium to be af-fluid velocity, v, to be the sum of the lattice Boltzmann

fected so metho(?) can be applied23], however, given the velocity andF/2p, then the models satisfiup to second
errors involved in method), particularly at lowr, method ~ ©rde? the continuity equation and an equation similar to the
(4) might be better applied ’in such cases ' Navier-Stokes equation. The difference is an additional term

of orderO(Fu). Method(4) introduces gravity by consider-
ing the equilibrium distribution to be a function of an altered
VIl. CONCLUSION velocity and by adding an additional term to the collision
pperator. In this method the introduction of gravity can be
thought of as being made up from a combination from
method(2) and a combination from methd@8). The relative
strengths of the contributions are selected to ensure that the
technique satisfies the exa@ip to second ordgrNavier-
250 | | | Stokes equation in the velocity. Within the incompressible
limit methods(2), (3), and(4) were found to compare well
with theory in situations where the nonlinear term of the

FIG. 10. The modulus of the ratig/Ap as a function of depth
when gravity is applied to a binary fluid with a horizontal interface
between the fluids. Gravity was applied wig=0.0001 andg,
=0.0002. The height is measured in lattice sites.

Different methods have been considered for introducing
body force, in the incompressible limit, into the lattice Bolt-
zmann model. Methodll) introduces gravity by including an
additional term in the equilibrium distribution function,

200 = 7] Navier-Stokes equation is zero. When the nonlinear term is
nonzero an observable difference is found between methods
150 . (2) and (3), which have the wrong nonlinear term, and
7 method(4), which has the correct nonlinear term. This dif-
100 % ference is small but under certain circumstances is large

enough to influence the simulation results, in which case
method(4) is an improvement over the other methods.

50 | - The introduction of gravity into a two-phase model was
also considered. Here the error introduced by the incorrect
| nonlinear term when metho@®) is used has to be weighed

| |
0 against any effect of using an altered “equilibrium velocity”
0.95 1.0 1.05 L =
rather than the true velocity in the definition fmay have
P on the thermodynamical properties of the fluid.
FIG. 11. The density as a function of depth for c&$€ <) and ACKNOWLEDGMENTS

case(ii) (+) shown in Table I. Also shown are straight lines with .
gradients 440;. The density is measured in particles per site and The authors wish to thank Dominique d’Humres for
the height in lattice sites. helpful comments on an earlier draft of this manuscript and
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ties. fi=E{(p,u+nw), (A2)

APPENDIX A: CHAPMAN-ENSKOG EXPANSION FOR A
LATTICE BOLTZMANN MODEL INCORPORATING
GRAVITY

w=7F/p andE/ is defined by Eq(13) where we expand

_f(O) g (D 26(2) o 2 _
Here we wish to consider the Chapman-Enskog expansion 11— 11+ €li+ €17, 0= €0yt €%0p, 4= €14,
of the Boltzmann equation (A3)
1 D f=fO+efW+ 2@ F =¢F,,, andgp=edp.
fi(r+Q ,t+1)_fi(r,t): — _(fi_ fi)+m_Faeia,
T bc?

(Al)  Substituting the expansion &f, and ¢ into E’ gives

1-dy el¢sD D enDT
p b + bC2 +%eiaua+ 2 eiaFla
D(D+2) T N2
. +W eiaeiﬁuauB"’zEn;eiaeiBFlauB“l‘E 7eiaeiBF1aF1/3
E'| pute—F,|= (Ad)
P 2 T 2 2T2 2 -
- u“+2en—u,F,+en“—=F7||, i=12,...Db
2¢%b P p?
el¢p;.D Uu?> 2enr €’n?7? 5 0
T, T T, ua (23 1 I_
PP "2 T2 Zp 1 2p2 1
From this we gef(P=E(p,u),
14D nDr ,ND(D+2) 7 . nDr b
_e‘a o —_e'ae' U™ 5 UsF1e|, 154
p_ b2 chp ¢ ¢t p TP oo,
fM=< (A5)
¢1D 2n’T .
p| = —— S—UF1.|, i=0
2 cp “F
and
'n?D(D+2) 7 - Lt . b
————— —e.84F1.Fis— ———=F7|, i=12,...
P_ 2cb p2| igr1am1p 2C2b2p2 1
2
o) (A6)
el iz
L I: L
P_ c2p2 1
|
from which we find and

2 fP=0, X iP=0, X fPe=ntFy,,

Ei ?i(Z)eiazoi (A7)

Ei Ti(l)eiozeiﬁ:n'T(FluzuB—’_Flﬁuuz)—i_Ip(ﬁ].(sozﬁ'

Now, the expansion of the Boltzmann equation up to second
order ine is
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(91 T O+ 6,01, FO)+ 62( Iot T+ a1 T 1+ €401, T

1 1
t 56 aeiﬁalaﬂlﬁfi(o)‘*‘ 5 Ciad1a91t £(©)

1 1
+ Eeiaalaalt O+ 5 d1t01t fi(O))

=- %(fi(o)+ efM+ 2D — 0 f (D 2£(2)

L MO (A8)
e——F1,8,-
bC2 1 1
This givesO(€?),
fO=£0, (A9)

O(e),

1 mD
alt fi(0)+ eia alafi(O): - _(fi(l)_?i(l)) + _ZFlaeia ’
T bc
(A10)
andO(€?),

1
Ipef O+ 0y, F 1+ eiaalafi(1)+Eeiaeiﬁalaalﬁfi«))

1 1 1
0 0 0
+ Eeiaalaaltfi( )+ Eeiaalaﬁltfi( )+ Ealt 1, f

1
==~ (f2-1). (A1)
We can now sum Eq$A10) and(A11) and their product
with g where =, fP=3,fbe =3f?P=3f%e =0.
Summing Eq(A10) gives

altp—’— alapuazov (A12)

while multiplying by e; ; before summing gives

(1-do) ,
c?ltpuﬁ-l-&lapuauﬁz— D Cc &1Bp+(n+m)Flﬁ
(A13)
Summing Eq(A11) gives
1

ath+ _ala(n+ m)Flaf: 01 (A14)

2

where we have used Eg&\12) and (A13). Multiplying by
e, before summing gives

1
&thuy-i— Eﬁlt(n'f' m)F1y+ &1anT(F1yUa+ Flauy)
+ [?l'yl p¢1: V(?laﬁlapuy+ galyalapua ’ (A15)

where we have used
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2 eiaeiﬂfi(l):nT(FlaU'B‘l‘ Flﬁua)
1

p(1-dg)c?

— Ty Sapt pUsUg

2

pC
- T{?l,y—(D T 2) (Uaﬁﬁy-}— Uﬁ5a7+ U,ygalg)

which is found from Eq(A10). Combining Eqs(A12) and
(A14) gives

1
pu,+ —(n+m)F4 =0,

+
atp aa 2

(A17)
while combining Eqs(A13) and (A15) gives

1
pua+ E(n+m)F1a

oA +dg[ puug+mn(u,Fg+ugF,)]

_ p(1—dg)c?
VR

+ V&E(‘)Bpua'i' gﬁlaﬁlﬁpuﬂ

+(N+mF,—1d,pd. (A18)

APPENDIX B: ANALYTICAL RESULTS

We now consider exact analytical solutid26,26,3Q for
methods (1)—(4) applied to a two-dimensional hexagonal
grid (D=2,b=6). In doing this we assume a steady solution
invariant in thex direction. This steady state implies

fo(2)=To(2), fo(2)=Fx(2), fs(2)=F5(2), Vz,
(B1)

where g = sin(mi/3— 7/6)e,+ cos@@i/3— w/6)e,, e and e,

are unit vectors in the horizontal and vertical directions, re-
spectively, and gravity acts in thedirection. We are solving
the lattice Boltzmann equation,

1 — D
fi(H—q ,t+ 1)—f|(l’,t)= - ;(fi_fi)‘l‘mEFaeia,
(B2)

where

fi=E{(p,u+nw) (B3)

and w= 7F/p. This represents method) for =1, m=n
=0, method(2) for m=1,l=n=0, method(3) for n=1, |
=m=0, and method(4) for 1=0,m=(27—1)/(27), n
=1/(27). We also definev according to Eq.(16). Now
Eifi=2ifi and Eifieix=2ifieix, Wh|le EifieiZZEifieiz
+n7F,. This gives

f1(2)+ f3(2)+F4(2) + f6(2)=T1(2) + F3(2) + T4(2) + fo(2),

f1(2)+fa(2)—f4(2) — fo(2) = F1(2) + fa(2) — F4(2) — T4(2),
(B4)
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f1(2) = f3(2) — f4(2) + fo(2) = F1(2) — F5(2) — F4(2) + 4(2)
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p(z+ ﬁ/z)l (1—do)+ 21 p(z+ 312 — \Bu,(z+3/2)

2
- T= FZ(Z)' 2
Nl F,(z+312)
+2|v,(z+ \/§/2)‘|’(n7—1/2)m
A ing thau,(z)=0, Vz th h luti
ssuming thatu,(z) z these have solution —(n+m)\/§FZ(z+\/§/2)
f(@)=1(2), fUD=fs(2), fa2)=Fa(2), f1<z>=f6(<ég :P(Z)l(l_do)+2| 52— Bu(2)
F.(2) F,(2) +2|v,(2)+(nT—1/2) F(2) 2] (B9)
— n7F,(z — nTF,(z v(2)+(nT— .
fl(z)=f1(z)—ﬁ, andfy(z)=f3(z)+ 2B p(2)
Subtracting Eq(B9) from Eq. (B8) gives
Now the Boltzmann equation for=1 andi =3 combined 2p(z+ J312)u(z+\312)+ (n+ M)F (z+\/3/2)
with Eq. (B5) gives z ‘
=2p(2)u(2) +(n+m)F,(2), (B10)

f—l(z+\/§/2)_%j§\/§/2)
= _nTFZ(Z)
=1, 23
FA(2)
+(n+m) 2\/§

and
nF,(z—\/3/2)
2\3

n7F,(z) B

2\3

fa(z—\/312)+

F.(2)

23"

=Tfa(2)+

(n+m)

while adding the equations gives

v,(z+ 312+ (n7—1/2)

p(z+ \/§/2)[2(1—d0)+4

F,(z+/3/2)

2
} +4lp(z+ 312) p(z+ /32— (m

Replacingf_i with E{ (p,u+nw) in Egs.(B6) and(B7), not-

ing thatc=1 in lattice units and replacingwith z+ y3/2 in

Eq. (B7), gives

p(z+ @/2)[ (1—do) + 21 p(z+312) + \3u,(z+/3/2)

F,(z+/3/2)

v,(z+ 312+ (n7—1/2) T

+2

2]
=p(Z)[ (1—do)+21$(2) +3u,(2)
F.2) 2]

vA2)+(NT—1/2) —

2 p(2)

+3(n+m)F,(2)

and

(B8)

p(z+1312)
(B6) ) V3E (24 312)
= 2(1-do)+4 122 2
=p(2)] 2(1—dg) +4|v,(2) +(nT— )W
+41¢(2) | +(m+n)/3f,(2). (B11)
Now consider a bounce-back boundary condition between
(B7) the last fluid site az=z, and an obstacle at=(z,— \/3/2).
This can be expressed as
f1(zo) =fa(zo= \/312). (B12)
Using Eqgs.(B5) and(B7) this can be written as
- nTF(z9) — n7F,(2p) F(zo)
fi(zg)— ——=—="f3(zg) + ——=——(n+m .
l( O) 2\/§ 3( O) 2\/§ ( ) 2\/§
(B13)

Sincef_i: E/(p,u-+nw) this gives the boundary condition

2p(Zp)u(Zp) +(N+m)F,(z) =0. (B14)

Consider first method$2), (3), and (4), which havel
=0 andm+n=1. In these cases the boundary condition Eq.
(B14) becomes
2p(29)v4(29) =0 Or pv,(20) =0, (B1Y

where pg=p(zy). Combining Eq.(B10) with this boundary
condition gives

p(2)v2)=pov,(Zp) =0, (B16)
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which shows that the bounce-back condition imposes a corFor method(1) we havel=1 andm=n=0. In this case a
fined fluid under gravity to be at rest only if the velocity is similar argument leads to
taken to bev as is the case for method®), (3), and(4).

Settingv,= 0 in Eq.(B11) to find the long-term behavior p(2)U,(2) = poU,(29) =0, (B21)
of the fluid andF,(z)=—p(2)g gives

p(z+ J312) implying that the fluid velocity should be taken asand
1—39/2(1—dg) + 2(n7—1/2)2g%/(1—do) p(z+\3ID[(1—do) +2u,(z+3/2) +2(2+\3/2)]
=p(z
PETT V39/2(1—dg) + 2(n7— 1/2)2g% (1—d,) =p(2)[(1—dg)+2ux(2) +24(2)]. (B22)
(B17)
or Since method1) can only be applied if there is a negli-
gible change in the fluid density it is not sensible to consider
p(z) a density gradient since this is negligibly small. Here we
consider the density variation in this limit to enable a com-
1—3g/2(1—dg)+2(n7— 1/2)%g%/(1—dy) 2243 parison to be made with the other methods. In this limit we
=po can write
1+/3g/2(1—dg) +2(n7— 1/2)2g?/(1—dy)
(819 202+ 31 B2+ 312~ 2p 4(2
When 7=1 the density gradient produced by both methods
(2) and (3) will be the same, although different from the =2p(2)[ ¢(z+ 312~ $(2)]
gradient produced by methad), despite it being a compos- - \/§p(z)V¢(z). (B23)

ite of the two methods. Ifr#1 the density gradient will
differ between the different methods, for meth@ this will
depend onr and for methodq2) and (4) the gradient is
independent ofr, however these differences will in general
be small. In the incompressible limigz<c2, we expect 2p(z+/312) p(z+ 312 = 2p$(2)=\3p(2)V (2).
J3g/2> (nT—1/2)?g? for the values ofr typically used in (B24
lattice Boltzmann simulations; for methdd) this is always

Or, to the same approximation

true sincent— 1/2=0. In this incompressible limit This approximation allows EqB11) to be expressed as
20z
p(z):po( 1- L) (B19) p(z+/312[2(1—do) + V3g]=p(2)[2(1—dy) — V37]
1—-d, (B25)

for each method. It is worth noting that in the compressible .
limit the exponential lawp(z)=pq exp(g’z/cﬁ), is obtained  9'VNY
in terms of a rescaled gravity
1 292 B26
2c? p(z)=po| 1~ 1—d, (B26)

V3

1—3g/2(1—dg) + 2(n7— 1/2)2g?/(1—dq)

1+/39/2(1—dg) + 2(n7— 1/2)2g?/(1—dy)
(8200  as was found for the other methods.
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